Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

Vaccination with circulating exosomes in autoimmune uveitis prevents recurrent intraocular inflammation.

Published Web Location


Exosomes participate in intercellular communication and act as important molecular vehicles in the regulation of numerous physiological and pathological processes, including autoimmune development. The role of circulating exosomes in the development of autoimmune uveitis is unknown. In this study, using the rat model of experimental autoimmune uveitis, which has clinical and histological features of pan uveitis in man, we evaluated the immunoregulatory function of circulating exosomes.


Experimental autoimmune uveitis was induced in Lewis rats either immunised with interphotoreceptor retinoid-binding protein R16 peptides or injected with activated R16-specific T cells. The disease incidence and severity were examined by indirect fundoscopy and flow cytometry. Circulating exosomes were isolated from peripheral blood of naïve and Day 14 R16 immunised Lewis rats. The effect of exosomes on specific T cells was evaluated by R16-specific T cell proliferation, cytokine production and recurrent uveitis induction.


Circulating exosomes derived from active immunised uveitis rats selectively inhibited immune responses of R16-specific T cells in vitro. Vaccination of naïve rats with these exosomes reduced the incidence of recurrent uveitis in an antigen-specific manner. Antigen-specific uveitogenic T cells reduced IFN-γ production and increased IL-10 after vaccination.


Circulating exosomes in autoimmune uveitis have the potential to be a novel treatment for recurrent autoimmune uveitis.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View