Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

An algorithmic account for how humans efficiently learn, transfer, and compose hierarchically structured decision policies

Published Web Location

https://www.sciencedirect.com/science/article/pii/S0010027724002531?via%3Dihub
No data is associated with this publication.
Creative Commons 'BY-NC' version 4.0 license
Abstract

Learning structures that effectively abstract decision policies is key to the flexibility of human intelligence. Previous work has shown that humans use hierarchically structured policies to efficiently navigate complex and dynamic environments. However, the computational processes that support the learning and construction of such policies remain insufficiently understood. To address this question, we tested 1026 human participants, who made over 1 million choices combined, in a decision-making task where they could learn, transfer, and recompose multiple sets of hierarchical policies. We propose a novel algorithmic account for the learning processes underlying observed human behavior. We show that humans rely on compressed policies over states in early learning, which gradually unfold into hierarchical representations via meta-learning and Bayesian inference. Our modeling evidence suggests that these hierarchical policies are structured in a temporally backward, rather than forward, fashion. Taken together, these algorithmic architectures characterize how the interplay between reinforcement learning, policy compression, meta-learning, and working memory supports structured decision-making and compositionality in a resource-rational way.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item