Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Anisotropic Turbulence and Protostellar Feedback in Molecular Clouds

Abstract

I investigate the decay and regeneration of turbulence in molecular clouds and the resulting star formation in those clouds in the presence of protostellar feedback. Studies of turbulence generally only consider isotropic turbulence, while the turbulence in molecular clouds may be anisotropic. I perform a series of simulations of anisotropic turbulence and measure its decay rate. I find that anisotropic turbulence decays slower than isotropic turbulence. When I break the velocity dispersion into isotropic and anisotropic components, I find the decay time is the crossing time of the isotropic component, which can be much slower than the total velocity dispersion. As part of this study, I present a measure of anisotropy that can be calculated in observations of molecular clouds. I also investigate the effects of compression on turbulence. This is motivated by the need to replenish turbulent energy. Using a series of simulations of contracting turbulence, I find that turbulence behaves as a monatomic ideal gas under isotropic compression. I also find that compression in a single direction imparts energy to that direction, but does not transfer that energy to the other two directions.

Finally, I perform a series of high resolution star formation simulations with adaptive mesh refinement (AMR) including hydrodynamics, gravity, radiation, protostellar outflows and protostellar luminosity. The simulations provide a self-consistent story of star formation, all while matching observations. The matched observations include the masses of both stars and prestellar cores, the clustering of cores and the luminosity function of protostars. In this story of star formation, cores form on the Jeans length of the host cloud. Each core forms a central star or binary, but also fragments repeatedly down 0.05 $M_{\odot}$ stars. The stellar radiation prevents fragmentation below this mass scale, but is not important on larger scales. The protostellar outflows eject 2/3 of the incoming mass, leaving 1/3 of the core mass for stars.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View