Skip to main content
eScholarship
Open Access Publications from the University of California

Incremental learning of independent, overlapping, and graded concept descriptions with an instance-based process framework

Abstract

Supervised learning algorithms make several simplifying assumptions concerning the characteristics of the concept descriptions to be learned. For example, concepts are often assumed to be (1) defined with respect to the same set of relevant attributes, (2) disjoint in instance space, and (3) have uniform instance distributions. While these assumptions constrain the learning task, they unfortunately limit an algorithm's applicability. We believe that supervised learning algorithms should learn attribute relevancies independently for each concept, allow instances to be members of any subset of concepts, and represent graded concept descriptions. This paper introduces a process framework for instance-based learning algorithms that exploit only specific instance and performance feedback information to guide their concept learning processes. We also introduce Bloom, a specific instantiation of this framework. Bloom is a supervised, incremental, instance-based learning algorithm that learns relative attribute relevancies independently for each concept, allows instances to be members of any subset of concepts, and represents graded concept memberships. We describe empirical evidence to support our claims that Bloom can learn independent, overlapping, and graded concept descriptions.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View