Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Models for Understanding Student Thinking using Data from Complex Computerized Science Tasks

Abstract

The Next Generation Science Standards (NGSS Lead States, 2013) define performance targets which will require assessment tasks that can integrate discipline knowledge and cross-cutting ideas with the practices of science. Complex computerized tasks will likely play a large role in assessing these standards, but many questions remain about how best to make use of such tasks within a psychometric framework (National Research Council, 2014). This dissertation explores the use of a more extensive cognitive modeling approach, driven by the extra information contained in action data collected while students interact with complex computerized tasks. Three separate papers are included. In Chapter 2, a mixture IRT model is presented that simultaneously classifies student understanding of a task while measuring student ability within their class. The model is based on differentially scoring the subtask action data from a complex performance. Simulation studies show that both class membership and class-specific ability can be reasonably estimated given sufficient numbers of items and response alternatives. The model is then applied to empirical data from a food-web task, providing some evidence of feasibility and validity. Chapter 3 explores the potential of using a more complex cognitive model for assessment purposes. Borrowing from the cognitive science domain, student decisions within a strategic task are modeled with a Markov decision process. Psychometric properties of the model are explored and simulation studies report on parameter recovery within the context of a simple strategy game. In Chapter 4 the Markov decision process (MDP) measurement model is then applied to an educational game to explore the practical benefits and difficulties of using such a model with real world data. Estimates from the MDP model are found to correlate more strongly with posttest results than a partial-credit IRT model based on outcome data alone.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View