- Main
Fabricating Germanium Interfaces for Battery Applications
- Serino, Andrew Clark
- Advisor(s): Weiss, Paul S;
- Dunn, Bruce S
Abstract
The experimental results presented herein detail the importance of material surfaces in device performance. We have demonstrated this importance by furthering and applying our understanding of germanium surfaces to a number of real-world applications. Pure and stable dispersions of germanane, an “all-surface” form of germanium, were created through solid-state synthesis followed by ultrasonication and centrifugation. These dispersions were used to fabricate germanane-based, high-performance, Li-ion anodes with capacities of ~1100 mA-h/g, capacity retention over 100 cycles, and Coulombic efficiency of 99%. Additionally, carborane monolayers were self-assembled on Ge(100) and Ge(111) surfaces through carboxylic acid tethers, and found to be capable of tuning the surface work function by ~0.4 eV without significantly affecting surface wettability. These capabilities are important for increasing device efficiency while minimizing complications associated with processing. Lastly, we introduce the concept of the molecular battery, a possible design using a layer-by-layer deposition approach, and our steps toward its realization. In this pursuit, we explored the assembly of metal-organic coordination of carborane-based linkers, as well as the capabilities of a film of benzene-based linkers (<50 nm) as a Li-ion battery separator using a Ge anode as a tool for analyzing performance.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-