Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

Fabricating Germanium Interfaces for Battery Applications

Abstract

The experimental results presented herein detail the importance of material surfaces in device performance. We have demonstrated this importance by furthering and applying our understanding of germanium surfaces to a number of real-world applications. Pure and stable dispersions of germanane, an “all-surface” form of germanium, were created through solid-state synthesis followed by ultrasonication and centrifugation. These dispersions were used to fabricate germanane-based, high-performance, Li-ion anodes with capacities of ~1100 mA-h/g, capacity retention over 100 cycles, and Coulombic efficiency of 99%. Additionally, carborane monolayers were self-assembled on Ge(100) and Ge(111) surfaces through carboxylic acid tethers, and found to be capable of tuning the surface work function by ~0.4 eV without significantly affecting surface wettability. These capabilities are important for increasing device efficiency while minimizing complications associated with processing. Lastly, we introduce the concept of the molecular battery, a possible design using a layer-by-layer deposition approach, and our steps toward its realization. In this pursuit, we explored the assembly of metal-organic coordination of carborane-based linkers, as well as the capabilities of a film of benzene-based linkers (<50 nm) as a Li-ion battery separator using a Ge anode as a tool for analyzing performance.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View