Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Novel Epac fluorescent ligand reveals distinct Epac1 vs. Epac2 distribution and function in cardiomyocytes

Published Web Location

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386405/
No data is associated with this publication.
Abstract

Exchange proteins directly activated by cAMP (Epac1 and Epac2) have been recently recognized as key players in β-adrenergic-dependent cardiac arrhythmias. Whereas Epac1 overexpression can lead to cardiac hypertrophy and Epac2 activation can be arrhythmogenic, it is unknown whether distinct subcellular distribution of Epac1 vs. Epac2 contributes to differential functional effects. Here, we characterized and used a novel fluorescent cAMP derivate Epac ligand 8-[Pharos-575]-2'-O-methyladenosine-3',5'-cyclic monophosphate (Φ-O-Me-cAMP) in mice lacking either one or both isoforms (Epac1-KO, Epac2-KO, or double knockout, DKO) to assess isoform localization and function. Fluorescence of Φ-O-Me-cAMP was enhanced by binding to Epac. Unlike several Epac-specific antibodies tested, Φ-O-Me-cAMP exhibited dramatically reduced signals in DKO myocytes. In WT, the apparent binding affinity (Kd = 10.2 ± 0.8 µM) is comparable to that of cAMP and nonfluorescent Epac-selective agonist 8-(4-chlorophenylthio)-2-O-methyladenosine-3'-,5'-cyclicmonophosphate (OMe-CPT). Φ-O-Me-cAMP readily entered intact myocytes, but did not activate PKA and its binding was competitively inhibited by OMe-CPT, confirming its Epac specificity. Φ-O-Me-cAMP is a weak partial agonist for purified Epac, but functioned as an antagonist for four Epac signaling pathways in myocytes. Epac2 and Epac1 were differentially concentrated along T tubules and around the nucleus, respectively. Epac1-KO abolished OMe-CPT-induced nuclear CaMKII activation and export of transcriptional regulator histone deacetylase 5. In conclusion, Epac1 is localized and functionally involved in nuclear signaling, whereas Epac2 is located at the T tubules and regulates arrhythmogenic sarcoplasmic reticulum Ca leak.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item