Skip to main content
eScholarship
Open Access Publications from the University of California

Electrostatic steering enhances the rate of cAMP binding to phosphodiesterase: Brownian dynamics modeling.

  • Author(s): Huang, Yu-ming M
  • Huber, Gary
  • McCammon, J Andrew
  • et al.

Published Web Location

http://dx.doi.org/10.1002/pro.2794
No data is associated with this publication.
Abstract

Signaling in cells often involves co-localization of the signaling molecules. Most experimental evidence has shown that intracellular compartmentalization restricts the range of action of the second messenger, 3'-5'-cyclic adenosine monophosphate (cAMP), which is degraded by phosphodiesterases (PDEs). The objective of this study is to understand the details of molecular encounter that may play a role in efficient operation of the cAMP signaling apparatus. The results from electrostatic potential calculations and Brownian dynamics simulations suggest that positive potential of the active site from PDE enhances capture of diffusing cAMP molecules. This electrostatic steering between cAMP and the active site of a PDE plays a major role in the enzyme-substrate encounter, an effect that may be of significance in sequestering cAMP released from a nearby binding site or in attracting more freely diffusing cAMP molecules.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item