Skip to main content
Download PDF
- Main
Investigating the minimum scan parameters required to generate free-breathing motion artefact-free fast-helical CT
Published Web Location
https://doi.org/10.1259/bjr.20170597Abstract
Objective
A recently proposed "5DCT" protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artefacts, which arise when tissue motion is greater than scan speed.Methods
Using a unique set of digital phantoms based on patient data and verified with a motion phantom, this work identifies the minimum scanner parameters required to successfully generate free-breathing artefact-free fast-helical scans. A motion phantom and 5 patients were imaged 25 times under free-breathing conditions in alternating directions with a 64-slice CT scanner employing a low-dose fast-helical protocol. A series of high temporal resolution (0.1 s) 5DCT scan data sets was generated in each case. A simulated CT scanner was used to "image" each free-breathing data set. Various CT scanner detector widths and rotation times were simulated, and verified using the motion phantom results. Motion-induced artefacts were quantified in patient images using structural similarity maps to determine the similarity between axial slices.Results
Increasing amounts of motion-induced artefacts were observed with increasing rotation times >0.2 s for 16 mm detector configuration.Conclusion
The current generation of 16-slice CT scanners, which are present in the majority of Radiation Oncology departments, are not capable of generating free-breathing sorting artefact-free images required for 5DCT. Advances in knowledge: A recently proposed "5DCT" protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artefacts, which arise when tissue motion is greater than scan speed. The results suggest that the current generation of 16-slice CT scanners, present in the majority of Radiation Oncology departments, are not capable of generating the free-breathing images required for 5DCT.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%