Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Ultrasensitive amyloid β-protein quantification with high dynamic range using a hybrid graphene-gold surface-enhanced Raman spectroscopy platform.

  • Author(s): Yu, Xinke
  • Hayden, Eric Y
  • Wang, Pu
  • Xia, Ming
  • Liang, Owen
  • Bai, Yu
  • Teplow, David B
  • Xie, Ya-Hong
  • et al.

Published Web Location

https://doi.org/10.1002/jrs.5785
Abstract

Surface enhanced Raman spectroscopy (SERS) holds great promise in biosensing because of its single-molecule, label-free sensitivity. We describe here the use of a graphene-gold hybrid plasmonic platform that enables quantitative SERS measurement. Quantification is enabled by normalizing analyte peak intensities to that of the graphene G peak. We show that two complementary quantification modes are intrinsic features of the platform, and that through their combined use, the platform enables accurate determination of analyte concentration over a concentration range spanning seven orders of magnitude. We demonstrate, using a biologically relevant test analyte, the amyloid β-protein (Aβ), a seminal pathologic agent of Alzheimer's disease (AD), that linear relationships exist between (a) peak intensity and concentration at a single plasmonic hot spot smaller than 100 nm, and (b) frequency of hot spots with observable protein signals, i.e. the co-location of an Aβ protein and a hot spot. We demonstrate the detection of Aβ at a concentration as low as 10-18 M after a single 20 μl aliquot of the analyte onto the hybrid platform. This detection sensitivity can be improved further through multiple applications of analyte to the platform and by rastering the laser beam with smaller step sizes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View