Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Thermal conductivity of sintered copper samples prepared using 3D printing-compatible polymer composite filaments

Abstract

Metal-filled polymers containing micro-powders of highly conductive metals can serve as a starting material to fabricate complex metal structures using economic filament extrusion-based 3D printing and molding methods. We report our measurements of the thermal conductivity of copper samples prepared using these methods before and after a thermal treatment process. Sintering the samples at 980 ℃ leads to an order of magnitude improvement in thermal conductivity when compared with as-printed or as-molded samples. Thermal conductivity values of approximately 30 W/mK are achieved using commercially available polymer-copper composite filaments with a copper volume fraction of 0.4. Over-sintering the samples at 1080 ℃ further enhances the thermal conductivity by more than two folds, but it leads to uncontrolled shrinkage of the samples. The measured thermal conductivities show a modest decrease with increasing temperatures due to increased electron-phonon scattering rates. The experimental data agree well with the thermal conductivity models previously reported for sintered porous metal samples. The measured electrical conductivity, Young's modulus and yield strength of the present sintered samples are also reported.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View