Skip to main content
Open Access Publications from the University of California

Survey of switching techniques in high-speed networks and their performance

  • Author(s): Oie, Yuji
  • Suda, Tatsuya
  • Kolson, David
  • Murata, Masayuki
  • Miyahara, Hideo
  • et al.

One of the most promising approaches for high speed networks for integrated service applications is fast packet switching, or ATM (Asynchronous Transfer Mode). ATM can be characterized by very high speed transmission links and simple, hard wired protocols within a network. To match the transmission speed of the network links, and to minimize the overhead due to the processing of network protocols, the switching of cells is done in hardware switching fabrics in ATM networks.

A number of designs has been proposed for implementing ATM switches. While many differences exist among the proposals, the vast majority of them is based on self-routing multi-stage interconnection networks. This is because of the desirable features of multi-stage interconnection networks such as self-routing capability and suitability for VLSI implementation.

Existing ATM switch architectures can be classified into two major classes: blocking switches, where blockings of cells may occur within a switch when more than one cell contends for the same internal link, and non-blocking switches, where no internal blocking occurs. A large number of techniques has also been proposed to improve the performance of blocking and nonblocking switches. In this paper, we present an extensive survey of the existing proposals for ATM switch architectures, focusing on their performance issues.

Main Content
Current View