Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Sensor Reduction, Estimation, and Control of an Upper-Limb Exoskeleton

Abstract

A multi-degree-of-freedom (multi-DOF) exoskeleton relies on an array of sensors to communicate its state (e.g., positions/orientations) and operator-exoskeleton contact inter- actions (e.g., forces/torques) to its control system. Although sensor redundancy is common in biological systems to cope with uncertainty and partial failure of sensors, in man-made systems, sensor redundancy increases the overall system’s cost and control complexity. This study presents a sensor reduction technique for force/torque (F/T) sensors utilizing a Kalman filter- based sensor fusion system in the context of admittance control. The methodology is applied to the EXO-UL8 exoskeleton, which is a powered, redundant, dual-arm, upper-limb robotic system with (7 arm + 1 hand) DOFs incorporating three 6-axis F/T sensors in each arm. Motivated by improving wearability through minimizing human-exoskeleton contact interfaces, which reduces spurious contact forces due to joint misalignment; and reducing cost, the proposed strategy emulates the admittance controller’s virtual dynamics with only a subset of sensors, resulting in the physical human-robot interaction feeling the same from the operator’s perspective. Experimental results indicate that human-exoskeleton power exchange and actuation stresses of the operator’s joints, with the proposed strategy on a subset of two sensors, are comparable to those in the full three-sensor case (p < 0.01). The experiments verify the proposed methodology for the EXO-UL8, and support the feasibility of operating other Kalman filter-based sensor fusion systems with fewer sensors without sacrificing transparency in physical human-robot interaction.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View