 Main
Characterization of DeuteronDeuteron Neutron Generators
 Waltz, Cory Scott
 Advisor(s): Van Bibber, Karl A
Abstract
A facility based on a nextgeneration, highflux DD neutron generator (HFNG) was commissioned at the University of California Berkeley. The characterization of the HFNG is presented in the following study. The current generator design produces near monoenergetic 2.45 MeV neutrons at outputs of 10^8 n/s. Calculations provided show that future conditioning at higher currents and voltages will allow for a production rate over 10^10 n/s.
Characteristics that affect the operational stability include the suppression of the targetemitted back streaming electrons, target sputtering and cooling, and ion beam optics. Suppression of secondary electrons resulting from the deuterium beam striking the target was achieved via the implementation of an electrostatic shroud with a voltage offset of greater than 400 V relative to the target. Ion beam optics analysis resulted in the creation of a defocussing extraction nozzle, allowing for cooler target temperatures and a more compact design. To calculate the target temperatures, a finite difference method (FDM) solver incorporating the additional heat removal effects of subcooled boiling was developed. Validation of the energy balance results from the finite difference method calculations showed the iterative solver converged to heat removal results within about 3% of the expected value. Testing of the extraction nozzle at 1.43 mA and 100 kV determined that overheating of the target did not occur as the measured neutron flux of the generator was near predicted values.
Many factors, including the target stopping power, deuterium atomic species, and target loading ratio, affect the flux distribution of the HFNG neutron generator. A detailed analysis to understand these factors effects is presented. Comparison of the calculated flux of the neutron generator using deuteron depth implantation data, neutron flux distribution data, and deuterium atomic species data matched the experimentally calculated flux determined from indium foil irradiations. An overview of experiments using the HFNG, including medical isotope cross section measurements, geochronology, delayed gamma measurements from uranium fission, and single event upset of cpu's is discussed. Future work should focus on the reduction of beam induced arcing between the shroud and the vacuum chamber. Investigation of insulator charge buildup, as well as electrical flashover of insulators should be explored. The reduction of beam induced arcing will allow for larger beam currents and acceleration voltages, therefore increasing the neutron flux.
Main Content
Enter the password to open this PDF file:













