Skip to main content
eScholarship
Open Access Publications from the University of California

Deforming convex projective manifolds

  • Author(s): Cooper, D
  • Long, D
  • Tillmann, S
  • et al.

Published Web Location

https://arxiv.org/abs/1511.06206
No data is associated with this publication.
Abstract

© 2018, Mathematical Sciences Publishers. All rights reserved. We study a properly convex real projective manifold with (possibly empty) compact, strictly convex boundary, and which consists of a compact part plus finitely many convex ends. We extend a theorem of Koszul, which asserts that for a compact manifold without boundary the holonomies of properly convex structures form an open subset of the representation variety. We also give a relative version for noncompact (G;X) manifolds of the openness of their holonomies.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item