Skip to main content
eScholarship
Open Access Publications from the University of California

College of Engineering

Mechanical and Aerospace Engineering bannerUC Davis

Thermal conductivity of carbon nanotube films and fibers with different structures and purities at different temperatures

The data associated with this publication are available upon request.
Abstract

The unique one-dimensional structure and concomitant properties endow carbon nanotubes with special natures, rendering them with unlimited potential in nanotechnology-associated applications. The increasing popularity of carbon nanotubes has created a demand for greater scientific understanding of the characteristics of thermal transport in nanostructured materials. However, the effects of impurities, misalignments, and structure factors on the thermal conductivity of carbon nanotube films and fibers are still poorly understood. Carbon nanotube films and fibers were produced, and the parallel thermal conductance technique was employed to determine the thermal conductivity. The effects of carbon nanotube structure, purity, and alignment on the thermal conductivity of carbon films and fibers were investigated to understand the characteristics of thermal transport in the nanostructured material. The importance of bulk density and cross-sectional area was determined experimentally. The results indicated that single-walled carbon nanotube films and fibers generally have high thermal conductivity. The presence of non-carbonaceous impurities degrades the thermal performance due to the low degree of bundle contact. The prepared carbon nanotube films and fibers are very efficient at conducting heat. The structure, purity, and alignment of carbon nanotubes play a fundamentally important role in determining the heat conduction properties of carbon films and fibers. The thermal conductivity may present power law dependence with temperature. The specific thermal conductivity decreases with increasing bulk density. The specific thermal conductivity of carbon nanotube fibers is significantly higher than that of carbon nanotube films due to the increased degree of bundle alignment. At room temperature, a maximum specific thermal conductivity is obtained but Umklapp scattering occurs.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View