- Main
Klt Varieties With Conjecturally Minimal Volume
Abstract
Abstract: We construct klt projective varieties with ample canonical class and the smallest known volume. We also find exceptional klt Fano varieties with the smallest known anti-canonical volume. We conjecture that our examples have the smallest volume in every dimension, and we give low-dimensional evidence for that. In order to improve on earlier examples, we are forced to consider weighted hypersurfaces that are not quasi-smooth. We show that our Fano varieties are exceptional by computing their global log canonical threshold (or $\alpha $-invariant) exactly; it is extremely large, roughly $2^{2^n}$ in dimension $n$. These examples give improved lower bounds in Birkar’s theorem on boundedness of complements for Fano varieties.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-