Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

A post-processing method based on interphase motion correction and averaging to improve image quality of 4D magnetic resonance imaging: a clinical feasibility study

Abstract

Methods:

Nine patients (seven pancreas, one liver, and one lung) were recruited. 4D-MRI was performed using two prototype k-space sorted techniques, stack-of-stars (SOS) and koosh-ball (KB) acquisitions. Post-processing using MoCoAve was implemented for both methods. Image quality score, apparent SNR (aSNR), sharpness, motion trajectory and standard deviation (σ_GTV) of the gross tumor volumes were compared between original and MoCoAve image sets.

Results:

All subjects successfully underwent 4D-MRI scans and MoCoAve was performed on all data sets. Significantly higher image quality scores (2.64 ± 0.39 vs 1.18 ± 0.34, p = 0.001) and aSNR (37.6 ± 15.3 vs 18.1 ± 5.7, p = 0.001) was observed in the MoCoAve images when compared to the original images. High correlation in tumor motion trajectories in the superoinferior direction (SI: 0.91 ± 0.08) and weaker in the anteroposterior (AP: 0.51 ± 0.44) and mediolateral (ML: 0.37 ± 0.23) directions, similar image sharpness (0.367 ± 0.068 vs 0.369 ± 0.072, p = 0.805), and minimal average absolute difference (0.47 ± 0.34  mm) of the motion trajectory profiles was found between the two image sets. The σ_GTV in pancreas patients was significantly (p = 0.039) lower in MoCoAve images (1.48 ± 1.35  cm3) than in the original images (2.17 ± 1.31  cm3).

Conclusion:

MoCoAve using interphase motion correction and averaging has shown promise as a post-processing method for improving k-space sorted (SOS and KB) 4D-MRI image quality in thoracic and abdominal cancer patients.

Advances in knowledge:

The proposed method is an image based post-processing method that could be applied to many k-space sorted 4D-MRI methods for improved image quality and signal-to-noise ratio while preserving image sharpness and respiratory motion fidelity. It is a useful technique for the radiotherapy planning community who are interested in using 4D-MRI but aren't satisfied with their current MR image quality.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View