Skip to main content
Download PDF
- Main
An empirical analysis of the benefit of decision tree size biases as a function of concept distribution
Abstract
The results reported here empirically show the benefit of decision tree size biases as a function of concept distribution. First, it is shown how concept distribution complexity (the number of internal nodes in the smallest decision tree consistent with the example space) affects the benefit of minimum size and maximum size decision tree biases. Second, a policy is described that defines what a learner should do given knowledge of the complexity of the distribution of concepts. Third, explanations for why the distribution of concepts seen in practice is amenable to the minimum size decision tree bias are given and evaluated empirically.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%