Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

The beginning of the end: how scaffolds nucleate autophagosome biogenesis.

  • Author(s): Stanley, Robin E
  • Ragusa, Michael J
  • Hurley, James H
  • et al.

Published Web Location

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877172/
No data is associated with this publication.
Abstract

Autophagy is a conserved mechanism that is essential for cell survival in starvation. Moreover, autophagy maintains cellular health by clearing unneeded or harmful materials from cells. Autophagy proceeds by the engulfment of bulk cytosol and organelles by a cup-shaped double-membrane sheet known as the phagophore. The phagophore closes on itself to form the autophagosome, which delivers its contents to the vacuole or lysosome for degradation. A multiprotein complex comprising the protein kinase autophagy-related protein 1 (Atg1) together with Atg13, Atg17, Atg29, and Atg31 (ULK1, ATG13, FIP200, and ATG101 in humans) has a pivotal role in the earliest steps of this process. This review summarizes recent structural and ultrastructural analysis of the earliest step in autophagosome biogenesis and discusses a model in which the Atg1 complex clusters high-curvature vesicles containing the integral membrane protein Atg9, thereby initiating the phagophore.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item