Skip to main content
Open Access Publications from the University of California


UCLA Electronic Theses and Dissertations bannerUCLA

Processable Conducting Polyaniline, Carbon Nanotubes, Graphene and Their Composites


Good processability is often required for applications of conducting materials like polyaniline (PANI), carbon nanotubes (CNTs) and graphene. This can be achieved by either physical stabilization or chemical functionalization. Functionalization usually expands the possible applications for the conducting materials depending on the properties of the functional groups. Processable conducting materials can also be combined with other co-dissolving materials to prepare composites with desired chemical and physical properties.

Polyanilines (PANI) doped with dodecylbenzenesulfonic acid (DBSA) are soluble in many organic solvents such as chloroform and toluene. Single wall carbon nanotubes (SWCNTs) can be dispersed into PANI/DBSA to form homogeneous solutions. PANI/DBSA functions as a conducting surfactant for SWCNTs. The mixture can be


combined with two-parts polyurethanes that co-dissolve in the organic solvent to produce conducting polymer composites. The composite mixtures can be applied onto various substrates by simple spray-on methods to obtain transparent and conducting coatings.

Graphene, a single layer of graphite, has drawn intense interest for its unique properties. Processable graphene has been produced in N-methyl-2-pyrrolidone (NMP) by a one-step solvothermal reduction of graphite oxide without the aid of any reducing reagent and/or surfactant. The as-synthesized graphene disperses well in a variety of organic solvents such as dimethylsulfoxide (DMSO), ethanol and tetrahydrogenfuran (THF). The conductivity of solvothermal reduced graphite oxide is comparable to hydrazine reduced graphite oxide.

Attempts were made to create intrinsically conducting glue comparable to mussel adhesive protiens using polyaniline and graphene. Mussels can attach to a variety of substrates under water. Catechol residue in 3,4-dihydroxyphenylalanine (L-DOPA) is the key to the wet adhesion. Tyrosine and phosphoserine with primary alkyl amine groups also participate in adhesion. A novel water soluble synthetic mussel adhesive containing both catechol and amine groups are synthesized in a simple approach. A polyallylamine backbone is used to take the place of the polyamide chain. Catechol is appended to the backbone as the key cross-linking group. Compared to polyallyamine, poly[N-(3,4- dihydroxybenzylidene)allylamine] exhibits good adhesion under alkaline water due to moderate cross-linking. When exposed to cross-linkers, this synthetic mussel adhesive can form a hydrogel at a very low concentration.


Various methods were tried to attach catechol group onto polyaniline and graphene to make synthetic conductive mussel adhesive. Although the chemistry proved to be successful, the material doesn't show great adhesion to selected substrates probably due the nature of the backbone and difficulties associated with its processability.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View