Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Nanoprobing of the effect of Cu(2+) cations on misfolding, interaction and aggregation of amyloid β peptide.

  • Author(s): Lv, Zhengjian;
  • Condron, Margaret M;
  • Teplow, David B;
  • Lyubchenko, Yuri L
  • et al.
Abstract

Misfolding and aggregation of the amyloid β-protein (Aβ) are hallmarks of Alzheimer's disease. Both processes are dependent on the environmental conditions, including the presence of divalent cations, such as Cu(2+). Cu(2+) cations regulate early stages of Aβ aggregation, but the molecular mechanism of Cu(2+) regulation is unknown. In this study we applied single molecule AFM force spectroscopy to elucidate the role of Cu(2+) cations on interpeptide interactions. By immobilizing one of two interacting Aβ42 molecules on a mica surface and tethering the counterpart molecule onto the tip, we were able to probe the interpeptide interactions in the presence and absence of Cu(2+) cations at pH 7.4, 6.8, 6.0, 5.0, and 4.0. The results show that the presence of Cu(2+) cations change the pattern of Aβ interactions for pH values between pH 7.4 and pH 5.0. Under these conditions, Cu(2+) cations induce Aβ42 peptide structural changes resulting in N-termini interactions within the dimers. Cu(2+) cations also stabilize the dimers. No effects of Cu(2+) cations on Aβ-Aβ interactions were observed at pH 4.0, suggesting that peptide protonation changes the peptide-cation interaction. The effect of Cu(2+) cations on later stages of Aβ aggregation was studied by AFM topographic images. The results demonstrate that substoichiometric Cu(2+) cations accelerate the formation of fibrils at pH 7.4 and 5.0, whereas no effect of Cu(2+) cations was observed at pH 4.0. Taken together, the combined AFM force spectroscopy and imaging analyses demonstrate that Cu(2+) cations promote both the initial and the elongation stages of Aβ aggregation, but protein protonation diminishes the effect of Cu(2+).

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View