Skip to main content
eScholarship
Open Access Publications from the University of California

Earth versus Neutrinos: Measuring the total muon-neutrino-to-nucleon cross section at ultra-high energies through differential Earth absorption of muon neutrinos from cosmic rays using the IceCube Detector

  • Author(s): Miarecki, Sandra C.
  • Advisor(s): Shapiro, Marjorie D.
  • Klein, Spencer R.
  • et al.
Abstract

The IceCube Neutrino Detector at the South Pole was constructed to measure the flux of high-energy neutrinos and to try to identify their cosmic sources. In addition to these astrophysical neutrinos, IceCube also detects the neutrinos that result from cosmic ray interactions with the atmosphere. These atmospheric neutrinos can be used to measure the total muon neutrino-to-nucleon cross section by measuring neutrino absorption in the Earth. The measurement involves isolating a sample of 10,784 Earth-transiting muons detected by IceCube in its 79-string configuration. The cross-section is determined using a two-dimensional fit in measured muon energy and zenith angle and is presented as a multiple of the Standard Model expectation as calculated by Cooper-Sarkar, Mertsch, and Sarkar in 2011. A multiple of 1.0 would indicate agreement with the Standard Model. The results of this analysis find the multiple to be 1.30 (+0.21 -0.19 statistical) (+0.40 -0.44 systematic) for the neutrino energy range of 6.3 to 980 TeV, which is in agreement with the Standard Model expectation.

Main Content
Current View