The canonical ensemble reloaded: the complex-stability of Euclidean quantum gravity for black holes in a box
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

The canonical ensemble reloaded: the complex-stability of Euclidean quantum gravity for black holes in a box

Published Web Location

https://link.springer.com/article/10.1007/JHEP08(2022)215
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

Abstract : We revisit the stability of black hole saddles for the Euclidean path integral describing the canonical partition function Z(β) for gravity inside a spherical reflecting cavity. The boundary condition at the cavity wall couples the transverse-traceless (TT) and pure-trace modes that are traditionally used to describe fluctuations about Euclidean Schwarzschild black holes in infinite-volume asymptotically flat and asymototically AdS spacetimes. This coupling obstructs the familiar Gibbons-Hawking-Perry treatment of the conformal factor problem, as Wick rotation of the pure-trace modes would require that the TT modes be rotated as well. The coupling also leads to complex eigenvalues for the Lichnerowicz operator. We nevertheless find that the Lichnerowicz operator can be diagonalized in the space of coupled modes. This observation allows the eigenmodes to define a natural generalization of the pure-trace Wick-rotation recipe used in infinite volume, with the result that a mode with eigenvalue λ is stable when Re λ > 0. In any cavity, and with any cosmological constant Λ ≤ 0, we show this recipe to reproduce the expectation from black hole thermodynamics that large Euclidean black holes define stable saddles while the saddles defined by small Euclidean black holes are unstable.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item