Conservation, inertia, and spacetime geometry
Abstract
As Harvey Brown emphasizes in his book Physical Relativity, inertial motion in general relativity is best understood as a theorem, and not a postulate. Here I discuss the status of the “conservation condition”, which states that the energy-momentum tensor associated with non-interacting matter is covariantly divergence-free, in connection with such theorems. I argue that the conservation condition is best understood as a consequence of the differential equations governing the evolution of matter in general relativity and many other theories. I conclude by discussing what it means to posit a certain spacetime geometry and the relationship between that geometry and the dynamical properties of matter.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.