Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

T-optimal designs formulti-factor polynomial regressionmodelsvia a semidefinite relaxation method

Abstract

We consider T-optimal experiment design problems for discriminating multi-factor polynomial regression models wherethe design space is defined by polynomial inequalities and the regression parameters are constrained to given convex sets.Our proposed optimality criterion is formulated as a convex optimization problem with a moment cone constraint. When theregression models have one factor, an exact semidefinite representation of the moment cone constraint can be applied to obtainan equivalent semidefinite program.When there are two or more factors in the models, we apply a moment relaxation techniqueand approximate the moment cone constraint by a hierarchy of semidefinite-representable outer approximations. When therelaxation hierarchy converges, an optimal discrimination design can be recovered from the optimal moment matrix, and itsoptimality can be additionally confirmed by an equivalence theorem. The methodology is illustrated with several examples.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View