An effective description of charge diffusion and energy transport in a charged plasma from holography
Published Web Location
https://arxiv.org/pdf/2205.03415.pdfAbstract
We discuss the physics of sound propagation and charge diffusion in a plasma with non-vanishing charge density. Our analysis culminates the program initiated in [1] to construct an open effective field theory of low-lying modes of the stress tensor and charge current in such plasmas. We model the plasma holographically as a Reissner-Nordström-AdSd+1 black hole, and study linearized fluctuations of longitudinally polarized scalar gravitons and photons in this background. We demonstrate that the perturbations can be decoupled and repackaged into the dynamics of two designer scalars, whose gravitational coupling is modulated by a non-trivial dilatonic factor. The holographic analysis allows us to isolate the phonon mode from the charge diffusion mode, and identify the combination of currents that corresponds to each of them. We use these results to obtain the real-time Gaussian effective action, which includes both the retarded response and the associated stochastic (Hawking) fluctuations, accurate to quartic order in gradients.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.