Skip to main content
Open Access Publications from the University of California

Energy Saving and Cost Projections for Advanced Hybrid, Battery Electric, and Fuel Cell Vehicles in 2015-2030


In this paper, the fuel savings, relative initial costs, and breakeven gasoline prices for mid-sized passenger cars utilizing advanced powertrains in 2015-2045 are compared to those using conventional and advanced engine/transmission power trains that would be available in the same time periods. The advanced powertrains considered are hybrid-electric (HEV and PHEV) and all-electric (EV) powered by batteries alone or by a hydrogen fuel cell. Large fuel savings compared to 2007 conventional passenger cars are projected by 2030 for all the advanced powertrains ranging from 45% with advanced engines in conventional vehicles to 60% in hybrid-electric vehicles (HEVs). The energy savings (combined gasoline and wall-plug electricity) for the PHEVs were 62% for the PHEV-20 and 75% for the PHEV-40. The energy saving for the FCHEV was 72% and for the BEV was 79%. The cost analyzes of the various advanced powertrains compared to the 2007 baseline vehicle indicated the most cost-effective was the HEV with a breakeven gasoline price of $2.50-3.00/gal gasoline for a five year payback period, 4% discount rate, and 12,000 miles/year. This was even lower than that for the conventional vehicles using the same advanced, high efficiency engine. The economics of battery-powered, 100 mile range vehicles were analyzed for battery costs between $300- 700/kWh. The breakeven gasoline prices for the BEVs are higher than for the other advanced vehicles being $4-5/gal even for the $300/kWh batteries. The economic results for the FCHEVs indicate that target fuel cell costs of $30–50/kW, 10-year life, and hydrogen prices in the $2.50–$ 3.00/kgH2 range make fuel cell vehicles cost competitive with HEVs and ICE vehicles using advanced engines.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View