Skip to main content
eScholarship
Open Access Publications from the University of California

Neural simulation of a system that learns representations of sensory experience

Abstract

The pyriform cortex forms stable representations of smells to allow their subsequent recognition. Clustering systems are shown to perform a similar function, so they provide a guide to understanding the operation of the pyriform. A neural model of a sample of pyriform cortex was built that adheres to most known biological constraints, including learning by long-term potentiation. Results of early simulations suggest some interesting properties. The effort has implications for the knowledge representations used in artificial intelligence work.