Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Colour pattern component phenotypic divergence can be predicted by the light environment

Published Web Location

http://10.0.4.87/jeb.13342
No data is associated with this publication.
Abstract

The sensory drive hypothesis predicts that across different light environments sexually selected colour patterns will change to increase an animal's visual communication efficiency within different habitats. This is because individuals with more efficient signal components are likely to have more successful matings and hence produce more offspring. However, how colour pattern signals change over multiple generations under different light environmental conditions has not been tested experimentally. Here, we manipulated colour pattern signal efficiency by providing different ambient light environments over multiple generations to examine whether male colour pattern components change within large replicated populations of guppies (Poecilia reticulata). We report that colour patches change within populations over time and are phenotypically different among our three different light environments. Visual modelling suggests that the majority of these changes can be understood by considering the chroma, hue and luminance of each colour patch as seen by female guppies under each light environment. Taken together, our results support the hypothesis that different environmental conditions during signal reception can directly or indirectly drive the phenotypic diversification of visual signals within species.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item