Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Electronic Theses and Dissertations bannerUC San Diego

Hydrogen/Deuterium-exchange (DXMS) Analysis of the PKG Iβ Regulatory Domain

  • Author(s): Lee, Jun Ho;
  • et al.

The type I cGMP-dependent protein kinases play critical roles in regulating vascular tone, platelet activation and synaptic plasticity. PKG I α and PKG Iβ differ in their first ~100 amino acids giving each isoform unique dimerization and autoinhibitory domains with identical cGMP-binding pockets and catalytic domains. The N-terminal leucine zipper and autoinhibitory domains have been shown to mediate isoform specific affinity for cGMP. PKG Iα has a >10 fold higher affinity for cGMP than PKG Iβ, and PKG Iβ missing its leucine zipper has a three-fold decreased affinity for cGMP. The exact mechanism through which the N-terminus of PKG alters cGMP-affinity is unknown. In the present study, we have used deuterium exchange mass spectrometry to study how PKG Iβ’s N-terminus affects the conformation and dynamics of its cGMP binding pockets. We found that the N-terminus increases the rate of deuterium exchange throughout the cGMP-binding domain. Our results suggest that the N-terminus shifts the conformational dynamics of the binding pockets, leading to an ‘open’ conformation that has an increased affinity for cGMP.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View