Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

The project for intercomparison of land-surface parameterization schemes (PILPS) phase 2(c) Red-Arkansas River basin experiment: 2. Spatial and temporal analysis of energy fluxes

  • Author(s): Liang, X
  • Wood, EF
  • Lettenmaier, DP
  • Lohmann, D
  • Boone, A
  • Chang, S
  • Chen, F
  • Dai, Y
  • Desborough, C
  • Dickinson, RE
  • Duan, Q
  • Ek, M
  • Gusev, YM
  • Habets, F
  • Irannejad, P
  • Koster, R
  • Mitchell, KE
  • Nasonova, ON
  • Noilhan, J
  • Schaake, J
  • Schlosser, A
  • Shao, Y
  • Shmakin, AB
  • Verseghy, D
  • Warrach, K
  • Wetzel, P
  • Xue, Y
  • Yang, ZL
  • Zeng, QC
  • et al.

The energy components of sixteen Soil-Vegetation Atmospheric Transfer (SVAT) schemes were analyzed and intercompared using 10 years of surface meteorological and radiative forcing data from the Red-Arkansas River basin in the Southern Great Plains of the United States. Comparisons of simulated surface energy fluxes among models showed that the net radiation and surface temperature generally had the best agreement among the schemes. On an average (annual and monthly) basis, the estimated latent heat fluxes agreed (to within approximate estimation errors) with the latent heat fluxes derived from a radiosonde-based atmospheric budget method for slightly more than half of the schemes. The sensible heat fluxes had larger differences among the schemes than did the latent heat fluxes, and the model-simulated ground heat fluxes had large variations among the schemes. The spatial patterns of the model-computed net radiation and surface temperature were generally similar among the schemes, and appear reasonable and consistent with observations of related variables, such as surface air temperature. The spatial mean patterns of latent and sensible heat fluxes were less similar than for net radiation, and the spatial patterns of the ground heat flux vary greatly among the 16 schemes. Generally, there is less similarity among the models in the temporal (interannual) variability of surface fluxes and temperature than there is in the mean fields, even for schemes with similar mean fields.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View