Skip to main content
eScholarship
Open Access Publications from the University of California

Spatial frequency domain tomography of protoporphyrin IX fluorescence in preclinical glioma models

Abstract

Abstract.Multifrequency (0 to 0.3  mm−1), multiwavelength (633, 680, 720, 800, and 820 nm) spatial frequency domain imaging (SFDI) of 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) was used to recover absorption, scattering, and fluorescence properties of glioblastoma multiforme spheroids in tissue-simulating phantoms and in vivo in a mouse model. Three-dimensional tomographic reconstructions of the frequency-dependent remitted light localized the depths of the spheroids within 500 μm, and the total amount of PpIX in the reconstructed images was constant to within 30% when spheroid depth was varied. In vivo tumor-to-normal contrast was greater than ∼1.5 in reduced scattering coefficient for all wavelengths and was ∼1.3 for the tissue concentration of deoxyhemoglobin (ctHb). The study demonstrates the feasibility of SFDI for providing enhanced image guidance during surgical resection of brain tumors.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View