Skip to main content
eScholarship
Open Access Publications from the University of California

UC Merced

UC Merced Previously Published Works bannerUC Merced

Large-scale numerical simulations on high-end computational platforms

Published Web Location

https://doi.org/10.1201/b10509
Abstract

After a decade where high-end computing was dominated by the rapid pace of improvements to CPU frequencies, the performance of next-generation supercomputers is increasingly differentiated by varying interconnect designs and levels of integration. Understanding the tradeoffs of these system designs is a key step towards making effective petascale computing a reality. In this work, we conduct an extensive performance evaluation of five key scientific application areas: plasma micro-turbulence, quantum chromodynamics, micro-finite-element solid mechanics, supernovae, and general relativistic astrophysics that use a variety of advanced computation methods, including adaptive mesh refinement, lattice topologies, particle in cell, and unstructured finite elements. Scalability results and analysis are presented on three current high-end HPC systems, the IBM Blue Gene/P at Argonne National Laboratory, the Cray XT4 and the Berkeley Laboratory’s NERSC Center, and an Intel Xeon cluster at Lawrence Livermore National Laboratory. In this chapter, we present each code as a section, where we describe the application, the parallelization strategies, and the primary results on each of the three platforms. Then we follow with a collective analysis of the codes performance and make concluding remarks.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View