Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Transgenically induced GAD tolerance curtails the development of early beta-cell autoreactivities but causes the subsequent development of supernormal autoreactivities to other beta-cell antigens.

Published Web Location

https://doi.org/10.2337/db08-0851
Abstract

Objective

To study how tolerance to GAD65 affects the development of autoimmunity to other beta-cell autoantigens (beta-CAAs) in GAD65-transgenic (GAD-tg) NOD mice.

Research design and methods

We used ELISPOT to characterize the frequency and functional phenotype of T-cell responses to GAD65 and other beta-CAAs at different ages in GAD-tg mice and their NOD mouse littermates.

Results

In young GAD-tg mice, Th1 responses to GAD65's dominant determinants were 13-18% of those in young NOD mice. This coincided with a great reduction in Th1 responses to other beta-CAAs. Evidently, GAD65-reactive T-cells are important for activating and/or expanding early autoreactivities in NOD mice. As GAD-tg mice aged, their T-cell responses to GAD65 remained low, but they developed supernormal splenic and pancreatic lymph node T-cell autoimmunity to other beta-CAAs. Apparently, the elimination/impairment of many GAD65-reactive T-cells allowed other beta-CAA-reactive T-cells to eventually expand to a greater extent, perhaps by reducing competition for antigen-presenting cells, or homeostatic proliferation in the target tissue, which may explain the GAD-tg mouse's usual disease incidence.

Conclusions

Transgenically induced reduction of GAD65 autoreactivity curtailed the development of early T-cell responses to other beta-CAAs. However, later in life, beta-CAA-reactive T-cells expanded to supernormal levels. These data suggest that early beta-cell autoreactivities are mutually dependent for support to activate and expand, while later in the disease process, autoantigen-specific T-cell pools can expand autonomously. These findings have implications for understanding type 1 diabetes immunopathogenesis and for designing antigen-based immunotherapeutics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View