- Main
Learning Directed Acyclic Graphs with Penalized Neighbourhood Regression
Abstract
We study a family of regularized score-based estimators for learning the structure of a directed acyclic graph (DAG) for a multivariate normal distribution from high-dimensional data with $p\gg n$. Our main results establish support recovery guarantees and deviation bounds for a family of penalized least-squares estimators under concave regularization without assuming prior knowledge of a variable ordering. These results apply to a variety of practical situations that allow for arbitrary nondegenerate covariance structures as well as many popular regularizers including the MCP, SCAD, $\ell_{0}$ and $\ell_{1}$. The proof relies on interpreting a DAG as a recursive linear structural equation model, which reduces the estimation problem to a series of neighbourhood regressions. We provide a novel statistical analysis of these neighbourhood problems, establishing uniform control over the superexponential family of neighbourhoods associated with a Gaussian distribution. We then apply these results to study the statistical properties of score-based DAG estimators, learning causal DAGs, and inferring conditional independence relations via graphical models. Our results yield---for the first time---finite-sample guarantees for structure learning of Gaussian DAGs in high-dimensions via score-based estimation.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-