Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

Renal Denervation Reverses Hepatic Insulin Resistance Induced by High-Fat Diet

Published Web Location

Activation of the sympathetic nervous system (SNS) constitutes a putative mechanism of obesity-induced insulin resistance. Thus, we hypothesized that inhibiting the SNS by using renal denervation (RDN) will improve insulin sensitivity (SI) in a nonhypertensive obese canine model. SI was measured using euglycemic-hyperinsulinemic clamp (EGC), before (week 0 [w0]) and after 6 weeks of high-fat diet (w6-HFD) feeding and after either RDN (HFD + RDN) or sham surgery (HFD + sham). As expected, HFD induced insulin resistance in the liver (sham 2.5 ± 0.6 vs. 0.7 ± 0.6 × 10-4 dL ⋅ kg-1 ⋅ min-1 ⋅ pmol/L-1 at w0 vs. w6-HFD [P < 0.05], respectively; HFD + RDN 1.6 ± 0.3 vs. 0.5 ± 0.3 × 10-4 dL ⋅ kg-1 ⋅ min-1 ⋅ pmol/L-1 at w0 vs. w6-HFD [P < 0.001], respectively). In sham animals, this insulin resistance persisted, yet RDN completely normalized hepatic SI in HFD-fed animals (1.8 ± 0.3 × 10-4 dL ⋅ kg-1 ⋅ min-1 ⋅ pmol/L-1 at HFD + RDN [P < 0.001] vs. w6-HFD, [P not significant] vs. w0) by reducing hepatic gluconeogenic genes, including G6Pase, PEPCK, and FOXO1. The data suggest that RDN downregulated hepatic gluconeogenesis primarily by upregulating liver X receptor α through the natriuretic peptide pathway. In conclusion, bilateral RDN completely normalizes hepatic SI in obese canines. These preclinical data implicate a novel mechanistic role for the renal nerves in the regulation of insulin action specifically at the level of the liver and show that the renal nerves constitute a new therapeutic target to counteract insulin resistance.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View