Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Amyloid and tau PET demonstrate region-specific associations in normal older people

Published Web Location

http://www.sciencedirect.com/science/article/pii/S1053811917301623?via=ihub
No data is associated with this publication.
Abstract

β-amyloid (Aβ) and tau pathology become increasingly prevalent with age, however, the spatial relationship between the two pathologies remains unknown. We examined local (same region) and non-local (different region) associations between these 2 aggregated proteins in 46 normal older adults using [18F]AV-1451 (for tau) and [11C]PiB (for Aβ) positron emission tomography (PET) and 1.5T magnetic resonance imaging (MRI) images. While local voxelwise analyses showed associations between PiB and AV-1451 tracer largely in the temporal lobes, k-means clustering revealed that some of these associations were driven by regions with low tracer retention. We followed this up with a whole-brain region-by-region (local and non-local) partial correlational analysis. We calculated each participant's mean AV-1451 and PiB uptake values within 87 regions of interest (ROI). Pairwise ROI analysis demonstrated many positive PiB-AV-1451 associations. Importantly, strong positive partial correlations (controlling for age, sex, and global gray matter fraction, p<.01) were identified between PiB in multiple regions of association cortex and AV-1451 in temporal cortical ROIs. There were also less frequent and weaker positive associations of regional PiB with frontoparietal AV-1451 uptake. Particularly in temporal lobe ROIs, AV-1451 uptake was strongly predicted by PiB across multiple ROI locations. These data indicate that Aβ and tau pathology show significant local and non-local regional associations among cognitively normal elderly, with increased PiB uptake throughout the cortex correlating with increased temporal lobe AV-1451 uptake. The spatial relationship between Aβ and tau accumulation does not appear to be specific to Aβ location, suggesting a regional vulnerability of temporal brain regions to tau accumulation regardless of where Aβ accumulates.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item