Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Conceptual Structure and the Procedural Affordances of Rational Numbers: Relational Reasoning With Fractions and Decimals

Abstract

The standard number system includes several distinct types of notations, which differ conceptually and afford different procedures. Among notations for rational numbers, the bipartite format of fractions (a/b) enables them to represent 2-dimensional relations between sets of discrete (i.e., countable) elements (e.g., red marbles/all marbles). In contrast, the format of decimals is inherently 1-dimensional, expressing a continuous-valued magnitude (i.e., proportion) but not a 2-dimensional relation between sets of countable elements. Experiment 1 showed that college students indeed view these 2-number notations as conceptually distinct. In a task that did not involve mathematical calculations, participants showed a strong preference to represent partitioned displays of discrete objects with fractions and partitioned displays of continuous masses with decimals. Experiment 2 provided evidence that people are better able to identify and evaluate ratio relationships using fractions than decimals, especially for discrete (or discretized) quantities. Experiments 3 and 4 found a similar pattern of performance for a more complex analogical reasoning task. When solving relational reasoning problems based on discrete or discretized quantities, fractions yielded greater accuracy than decimals; in contrast, when quantities were continuous, accuracy was lower for both symbolic notations. Whereas previous research has established that decimals are more effective than fractions in supporting magnitude comparisons, the present study reveals that fractions are relatively advantageous in supporting relational reasoning with discrete (or discretized) concepts. These findings provide an explanation for the effectiveness of natural frequency formats in supporting some types of reasoning, and have implications for teaching of rational numbers.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View