Skip to main content
eScholarship
Open Access Publications from the University of California

SEM Analysis of Electrophoretically-Deposited Nanoparticle Films

  • Author(s): Verma, Neil
  • Advisor(s): Talbot, Jan B
  • et al.
Abstract

Cobalt ferrite nanoparticles (20 nm) were synthesized and electrophoretically deposited onto aluminum foil, graphite paper, and carbon felt in order to study its potential as a cost-effective electrocatalyst for the oxidation of ammonium sulfite to ammonium sulfate in a proposed sulfur ammonia thermochemical cycle. Scanning electron microscopy and linear sweep voltammetry were used to characterize the deposited films and investigate their electrochemical activity. Furthermore, the effects of electrophoretic deposition conditions on deposit morphology and subsequently the effects of deposit morphology on electrochemical activity in 2 M ammonium sulfite were studied to better understand how to improve electrocatalysts. It was found that there is a critical deposit thickness for each substrate, where additional deposited particles reduce overall electrocatalytic activity of the deposits. For graphite paper, this thickness was estimated to be 3 particle layers for the EPD conditions studied. The 3 particle layer film on graphite paper resulted in a 5.5 fold increase in current density from a blank graphite paper substrate. For carbon felt, the deposit thickness threshold was calculated to be 0.13 of a particle layer for the EPD conditions studied. Moreover, this film was found to have a 4.3 fold increase in current density from a blank carbon felt substrate.

Main Content
Current View