Skip to main content
Open Access Publications from the University of California


UCLA Previously Published Works bannerUCLA

Unit firing and oscillations at seizure onset in epileptic rodents.


Epileptic seizures result from a variety of pathophysiological processes, evidenced by different electrographic ictal onset patterns, as seen on direct brain recordings. The two most common electrographic patterns of focal ictal onset in patients are hypersynchronous (HYP) and low-voltage fast (LVF). Whereas LVF ictal onsets were believed to result from disinhibition; based on similarities with absence seizures, focal HYP ictal onsets were believed to result from increased synchronizing inhibition. Recent findings, however, suggest the differences between these seizure onset types are more complicated and, in some cases, the opposite of these concepts are true. The following review presents evidence that a reduction of tonic inhibition on small pathologically interconnected neuron (PIN) clusters generating pathological high-frequency oscillations (pHFOs), which reflect abnormal synchronously bursting neurons may be the cause of HYP ictal onsets. Increased inhibition preceding LVF ictal onsets are discussed in other reviews in this issue. We postulate that neuronal cell loss following epileptogenic insults can result in structural reorganization, giving rise to small PIN clusters, which generate pHFOs. These clusters have a heterogeneous distribution and are spatially stable over time. Studies have demonstrated that a transient reduction in tonic inhibition causes these clusters to increase in size. This could result in consolidation and synchronization of pHFOs until a critical mass leads to propagation of HYP ictal discharges. Viewed within a network neuroscience framework, local disturbances such as PIN clusters are likely to contribute to large-scale brain network alterations: a better understanding of these epileptogenic networks promises to elucidate mechanisms of ictogenesis, epileptogenesis, and certain comorbidities of epilepsy.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View