Skip to main content
Open Access Publications from the University of California

Towards More Scalable and Robust Machine Learning

  • Author(s): Yin, Dong
  • Advisor(s): Ramchandran, Kannan
  • et al.

For many data-intensive real-world applications, such as recognizing objects from images, detecting spam emails, and recommending items on retail websites, the most successful current approaches involve learning rich prediction rules from large datasets. There are many challenges in these machine learning tasks. For example, as the size of the datasets and the complexity of these prediction rules increase, there is a significant challenge in designing scalable methods that can effectively exploit the availability of distributed computing units. As another example, in many machine learning applications, there can be data corruptions, communication errors, and even adversarial attacks during training and test. Therefore, to build reliable machine learning models, we also have to tackle the challenge of robustness in machine learning.

In this dissertation, we study several topics on the scalability and robustness in large-scale learning, with a focus of establishing solid theoretical foundations for these problems, and demonstrate recent progress towards the ambitious goal of building more scalable and robust machine learning models. We start with the speedup saturation problem in distributed stochastic gradient descent (SGD) algorithms with large mini-batches. We introduce the notion of gradient diversity, a metric of the dissimilarity between concurrent gradient updates, and show its key role in the convergence and generalization performance of mini-batch SGD. We then move forward to Byzantine distributed learning, a topic that involves both scalability and robustness in distributed learning. In the Byzantine setting that we consider, a fraction of distributed worker machines can have arbitrary or even adversarial behavior. We design statistically and computationally efficient algorithms to defend against Byzantine failures in distributed optimization with convex and non-convex objectives. Lastly, we discuss the adversarial example phenomenon. We provide theoretical analysis of the adversarially robust generalization properties of machine learning models through the lens of Radamacher complexity.

Main Content
Current View