High-order similarity relations in radiative transfer
Published Web Location
http://shuangz.com/projects/similarity-sg14/similarity-sg14.pdfAbstract
Radiative transfer equations (RTEs) with different scattering parameters can lead to identical solution radiance fields. Similarity theory studies this effect by introducing a hierarchy of equivalence relations called "similarity relations". Unfortunately, given a set of scattering parameters, it remains unclear how to find altered ones satisfying these relations, significantly limiting the theory's practical value. This paper presents a complete exposition of similarity theory, which provides fundamental insights into the structure of the RTE's parameter space. To utilize the theory in its general high-order form, we introduce a new approach to solve for the altered parameters including the absorption and scattering coefficients as well as a fully tabulated phase function. We demonstrate the practical utility of our work using two applications: forward and inverse rendering of translucent media. Forward rendering is our main application, and we develop an algorithm exploiting similarity relations to offer "free" speedups for Monte Carlo rendering of optically dense and forward-scattering materials. For inverse rendering, we propose a proof-of-concept approach which warps the parameter space and greatly improves the efficiency of gradient descent algorithms. We believe similarity theory is important for simulating and acquiring volume-based appearance, and our approach has the potential to benefit a wide range of future applications in this area. Copyright © ACM.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
This item is under embargo until December 31, 2999.
You may have access to the publisher's version here:
http://shuangz.com/projects/similarity-sg14/similarity-sg14.pdfNotify me by email when this item becomes available