Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Nanomachines and Other Caps on Mesoporous Silica Nanoparticles for Drug Delivery.

Abstract

Mesoporous silica nanoparticles (MSNs) are delivery vehicles that can carry cargo molecules and release them on command. The particles used in the applications reported in this Account are around 100 nm in diameter (about the size of a virus) and contain 2.5 nm tubular pores with a total volume of about 1 cm3/g. For the biomedical applications discussed here, the cargo is trapped in the pores until the particles are stimulated to release it. The challenges are to get the particles to the site of a disease and then to deliver the cargo on command. We describe methods to do both, and we illustrate the applicability of the particles to cure cancer and intracellular infectious disease. Our first steps were to design multifunctional nanoparticles with properties that allow them to carry and deliver hydrophobic drugs. Many important pharmaceuticals are hydrophobic and cannot reach the diseased sites by themselves. We describe how we modified MSNs to make them dispersible, imagable, and targetable and discuss in vitro studies. We then present examples of surface modifications that allow them to deliver large molecules such as siRNA. In vivo studies of siRNA delivery to treat triple-negative breast and ovarian cancers are presented. The next steps are to attach nanomachines and other types of caps that trap drug molecules but release them when stimulated. We describe nanomachines that respond autonomously (without human intervention) to stimuli specific to disease sites. A versatile type of machine is a nanovalve that is closed at neutral (blood) pH but opens upon acidification that occurs in endolysosomes of cancer cells. Another type of machine, a snap-top cap, is stimulated by reducing agents such as glutathione in the cytosol of cells. Both of these platforms were studied in vitro to deliver antibiotics to infected macrophages and in vivo to cure and kill the intracellular bacteria M. tuberculosis and F. tularensis. The latter is a tier 1 select agent of bioterrorism. Finally, we describe nanomachines for drug delivery that are controlled by externally administered light and magnetic fields. A futuristic dream for nanotherapy is the ability to control a nano-object everywhere in the body. Magnetic fields penetrate completely and have spatial selectivity governed by the size of the field-producing coil. We describe how to control nanovalves with alternating magnetic fields (AMFs) and superparamagnetic cores inside the MSNs. The AMF heats the cores, and temperature-sensitive caps release the cargo. In vitro studies demonstrate dose control of the therapeutic to cause apoptosis without overheating the cells. Nanocarriers have great promise for therapeutic applications, and MSNs that can carry drugs to the site of a disease to produce a high local concentration without premature release and off-target damage may have the capability of realizing this goal.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View