Skip to main content
Download PDF
- Main
From viral evolution to spatial contagion: a biologically modulated Hawkes model.
- Holbrook, Andrew J;
- Ji, Xiang;
- Suchard, Marc A
- Editor(s): Schwartz, Russell
Published Web Location
https://doi.org/10.1093/bioinformatics/btac027Abstract
Summary
Mutations sometimes increase contagiousness for evolving pathogens. During an epidemic, scientists use viral genome data to infer a shared evolutionary history and connect this history to geographic spread. We propose a model that directly relates a pathogen's evolution to its spatial contagion dynamics-effectively combining the two epidemiological paradigms of phylogenetic inference and self-exciting process modeling-and apply this phylogenetic Hawkes process to a Bayesian analysis of 23 421 viral cases from the 2014 to 2016 Ebola outbreak in West Africa. The proposed model is able to detect individual viruses with significantly elevated rates of spatiotemporal propagation for a subset of 1610 samples that provide genome data. Finally, to facilitate model application in big data settings, we develop massively parallel implementations for the gradient and Hessian of the log-likelihood and apply our high-performance computing framework within an adaptively pre-conditioned Hamiltonian Monte Carlo routine.Supplementary information
Supplementary data are available at Bioinformatics online.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
If you recently published or updated this item, please wait up to 30 minutes for the PDF to appear here.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%