Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Terrestrial-Atmospheric Exchange of Reduced Sulfur Compounds in Natural Ecosystems


The sulfur biogeochemical cycle includes biotic and abiotic processes important to global climate, atmospheric chemistry, food security, and the study of related cycles. The largest flux of sulfur on Earth is weathering from the continents into the sulfate-rich oceans; one way in which sulfur can be returned to land is through transport of reduced sulfur gases via the atmosphere. Here I developed a method for quantifying low-level environmental fluxes of several sulfur-containing gases, H2S, COS, CH3SCH3 (DMS), and HSCH3, between terrestrial ecosystems and the atmosphere.

COS is the most prevalent reduced sulfur gas in the atmosphere, considered to be inert in the troposphere except for its uptake in plant leaves and to a smaller extent aerobic soils. This dissertation reports two surprising cases that go against conventional thinking about the sulfur cycle. We found that the common salt marsh plant Batis maritima can mediate net COS production to the atmosphere. We also found that an aerobic wheat field soil produces COS abiotically when incubated in the dark at > 25 °C and at lower temperatures under light conditions. We then sought to separately quantify plant and soil sulfur gas fluxes by undertaking a year-long field campaign in a grassland with a Mediterranean climate, where green plants were present only half of the year. We measured in situ soil fluxes of COS and DMS during the non- growing dry season, using water additions to simulate soil fluxes of the growing, wet season. COS and CO2 are consumed in a predictable ratio by enzymes involved in photosynthetic pathways; however, while CO2 is released by back diffusion and autorespiration, COS is usually not generated by plants. Using measurements during the growing season, we were then able to calculate gross primary production by using the special relationship between CO2 and COS.

This dissertation has developed a greater understanding of the vagaries of the atmospheric-terrestrial sulfur cycle and explored using that cycle as a tool for studying the carbon cycle.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View