Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Energy storage under high-rate compression of single crystal tantalum

Published Web Location

https://export.arxiv.org/abs/2205.04653v3
No data is associated with this publication.
Creative Commons 'BY' version 4.0 license
Abstract

When a material is plastically deformed the majority of mechanical work is dissipated as heat, and the fraction of plastic work converted into heat is known as the Taylor-Quinney coefficient (TQC). Large-scale molecular dynamics simulations were performed of high strain rate compression of single-crystal tantalum, and the resulting integral and differential TQC values are reported up to true strains of 1.0. A phenomenological model is proposed for the energy stored in the material as a function of plastic strain with an asymptotic limit for this energy defined by the deformation conditions. The model reasonably describes the convergence of TQC values to 1.0 with increasing plastic strain, but does not directly address the physical nature of thermo-mechanical conversion. This is instead developed in a second more detailed model that accurately accounts for energy storage with two distinct contributions, one being the growing dislocation network and the other the point defect debris left behind by moving dislocations. The contribution of the point defect debris is found to lag behind that of the dislocation network but to be substantial for the high-rate straining conditions considered here.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item