Skip to main content
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Electronic Theses and Dissertations bannerUC Berkeley

Approximation and Control of Skill Based Parallel Service Systems with Homogeneous Service

  • Author(s): Grosbard, Dean
  • Advisor(s): Leachman, Robert S
  • et al.

A skill base parallel service system is comprised of a set of customers of different classes that arrive randomly for service, a set of servers that serve those customers and a set of qualifications that defines which customer classes can be served by which server. Systems of this kind appear in a wide range of applications from the assignment of jobs to employees with different skills to network traffic routing. Literature regarding these systems has almost exclusively been focused on the asymptotic heavy traffic regime. The reason being that such an asymptotic regime is convenient to analyze and allows the derivation of exact results. However, although many applications can be well approximated by an asymptotic regime, many others can not. In this work we are especially concerned with large scale sparse systems where, despite the system being large of scale, each customer class can only be served by a small subset of the servers. After laying foundations for the model in Chapter 1 and exploring structural properties in Chapter 2 we go on to present the two main contributions of this work. In Chapter 3 we develop a set of approximations that compile to a , first of its kind, approximation scheme of matching rates of skill based parallel service system operating under the \textit{first-come-first-serve} or \textit{longest-queue-first} policies. The accuracy of the approximation is verified with extensive simulation experiments where it is shown to provide matching rate estimates with an absolute error of $3\%-5\%$ for a wide range of traffic intensities. Later, in Chapter 4 we use insights provided by the new approximation to derive weighted versions of the \textit{first-come-first-serve} or \textit{longest-queue-first} and show, through comprehensive simulation testing, that these weighted polices dramatically reduce the waiting time of customers in congested system compared to the original unweighted versions. Finally, we extend the use of the weighted policies to systems with matching rewards and show that, by appropriate choice of weights, these policies can be used by a controller to efficiently trade-off between the rate of reward accumulation and waiting time experienced by the customers

Main Content
Current View