Skip to main content
Open Access Publications from the University of California

Long-term Effects of Fire Hazard Reduction Treatments in the Southern Cascades and Northern Sierra Nevada, California

  • Author(s): Chiono, Lindsay Aney
  • Advisor(s): Stephens, Scott L.
  • et al.

Historic fire regimes in the dry conifer forests of the southern Cascade and northern Sierra Nevada regions of California were characterized by relatively frequent fires of low and mixed severity. Human management practices since the mid-19th century have altered the disturbance role of fire in these dry yellow pine and mixed conifer forest ecosystems. Fire suppression, high-grade timber harvesting, and livestock grazing have reduced the frequency of burning and caused a shift in the structure and species composition of forest vegetation. These changes, including high levels of accumulated fuel and increased structural homogeneity and dominance of shade-tolerant tree species, combined with a warming climate, have rendered many stands susceptible to high-severity fire. In many forests of the western United States, wildfires are increasingly difficult and costly to control, and human communities are regularly threatened during the fire season.

Treating wildland fuels to reduce wildfire hazards has become a primary focus of contemporary forest management, particularly in the wildland-urban interface. The specific objectives of treatment are diverse, but in general, treatments address accumulated surface fuels, the fuel ladders that carry fire into the forest canopy, and surface and canopy fuel continuity. These modifications to forest fuels can alleviate the severity of a future wildfire and support suppression activities through improved access and reduced fire intensity. While fuel reduction treatments are increasingly common in western forests, the long-term structural and ecological effects of treatment remain poorly understood. This dissertation uses a chronosequence of treated stands to examine the temporal influence of treatment on forest structure, the understory plant community, and wildfire hazard.

The first chapter examines the effects of fuels reduction treatment on stand structure, overstory species composition, and ground and surface fuels. The stand structures and reduced surface fuel loads created by fuels modification are temporary, yet few studies have assessed the lifespan of treatment effects. The structural legacies of treatment were still present in the oldest treatment sites. Treatments reduced site occupancy (stand density and basal area) and increased quadratic mean diameter by approximately 50%. The contribution of shade-tolerant true firs to stand density was also reduced by treatment. Other stand characteristics, particularly timelag fuel loads, seedling density, and shrub cover, exhibited substantial variability, and differences between treatment age classes and between treatment and control groups were not statistically significant.

The second chapter evaluates fuel treatment longevity based on potential wildfire behavior and effects on vegetation. Forest managers must divide scarce resources between fuel treatment maintenance, which is necessary to retain low hazard conditions in treated stands, and the construction of new treatments. Yet the most basic questions concerning the lifespan of treatment effectiveness have rarely been engaged in the literature. In this study, field-gathered fuels and vegetation data were used to aid fuel model selection and to parameterize a fire behavior and effects model, Fuels Management Analyst Plus. In addition, a semi-qualitative, semi-quantitative protocol was applied to assess ladder fuel hazard in field sampling plots. Untreated sites exhibited fire behavior that would challenge wildfire suppression efforts, and projected overstory mortality was considerable. In contrast, estimated fire behavior and severity were low to moderate in even the oldest fuel treatments, those sampled 8-26 years after treatment implementation. Findings indicate that in the forest types characteristic of the northern Sierra Nevada and southern Cascades, treatments for wildfire hazard reduction retain their effectiveness for more than 10-15 years and possibly beyond a quarter century.

Fuel treatment activities disturb the forest floor, increase resource availability, and may introduce non-native plant propagules to forest stands. Non-native plant invasions can have profound consequences for ecosystem structure and function. For these reasons, there is concern that treatment for fire hazard reduction may promote invasion by exotic species. Several short-term studies have shown small increases in non-native abundance as a result of treatment, but the long-term effects have rarely been addressed in the literature. The final chapter examines treatment effects on the understory plant community and on cover of the forest floor, as mineral soil exposure has been linked to invasion. Regression tree analysis provided insights into the influence of treatment and site characteristics on these variables. Treatments increased forb and graminoid cover, but temporal trends in abundance were opposite. An initial increase in forb cover in the most recently treated sites was followed by a gradual decline, while mean graminoid cover was highest in the oldest treatments. Shrubs dominated live plant abundance. Shrub cover showed few temporal trends, but was negatively associated with canopy cover. Mineral soil exposure was increased by treatment and declined slowly over time, remaining elevated in the oldest treatments. Non-native plant species were very rare in the treatment sites sampled in this study. Despite the availability of bare mineral soil and the proximity of transportation corridors, a source of non-native propagules, non-natives were recorded in only 2% of sampling plots. This study suggests that forest disturbance associated with treatment for hazardous fuels reduction may not produce significant invasions in these forest types.

Main Content
Current View