Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Electronic Theses and Dissertations bannerUCLA

Theory and Design of Terahertz Quantum-Cascade Littrow Metasurface External Cavity Lasers

Abstract

Quantum-cascade vertical-external-cavity surface-emitting-laser (QC-VECSEL) is a recently developed compact and coherent source of THz radiation which has demonstrated excellent beam quality and scalable high-power. The key component of the QC-VECSEL is an amplifying reflectarray metasurface made up of an array of sub-wavelength metal-metal waveguides loaded with quantum-cascade (GaAs/AlGaAs) laser gain material. To further the usefulness of this technology for many applications, including spectroscopy, heterodyne detection, and multispectral imaging, broadband and tunable THz QCLs are required. In this work, I investigate the feasibility of two techniques for tuning THz metasurface-based QCLs. First, A Littrow metasurface external cavity laser (ECL) is modeled and studied. We also propose and evaluate a novel method to implement Littrow ECL based upon blazed metasurface gratings. Electromagnetic simulations show that these metasurfaces can provide up to 15% fractional tunability around the center frequency of the laser at 3.3 THz. Preliminary results on several active resonant-phonon quantum-cascade materials are also obtained. Current progress on actual fabrication and device testing is reported.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View